Каждый программист хочет стать лучшим, получать все более интересные и сложные задачи и решать их все более эффективными способами. В мире интернет-разработок к таким задачам можно отнести те, с которыми сталкиваются разработчики высоконагруженных систем.

Большая часть информации, опубликованная по теме высоких нагрузок в интернете, представляет собой всего лишь описания технических характеристик крупных систем. Мы же попробуем изложить принципы, по которым строятся архитектуры самых передовых и самых посещаемых интернет-проектов нашего времени.

  • Функциональное разделение
  • Классическое горизонтальное масштабирование
    • Концепции Shared Nothing и Stateless
    • Критика концепций Shared Nothing и Stateless
    • Связность кода и данных
  • Кеширование
    • Проблема инвалидации кеша
    • Проблема старта с непрогретым кешем

Начнем наш третий урок, посвященный бизнес-логике проекта. Это самая главная составляющая в обработке любого запроса. Для таких вычислений требуются бэкенды — тяжелые серверы с большими вычислительными мощностями. Если фронтенд не может отдать клиенту что-то самостоятельно (а как мы выяснили в прошлом номере, он без проблем можем сам отдать, к примеру, картинки), то он делает запрос бекенду. На бэкенде отрабатывается бизнес-логика, то есть формируются и обрабатываются данные, при этом данные хранятся в другом слое — сетевом хранилище, базе данных или файловой системе. Хранение данных — это тема следующего урока, а сегодня мы сосредоточимся на масштабировании бекенда.

Сразу предупредим: масштабирование вычисляющих бэкендов — одна из самых сложных тем, в которой существует множество мифов. Облачные вычисления решают проблему производительности — уверены многие. Однако это верно не до конца: для того чтобы вам действительно могли помочь облачные сервисы, вы должны правильно подготовить ваш программный код. Вы можете поднять сколько угодно серверов, скажем, в Amazon EC2, но какой с них толк, если код не умеет использовать мощности каждого из них. Итак, как масштабировать бэкенд?

 

Функциональное разделение

Самый первый и простой способ, с которым сталкиваются все, — это функциональное разбиение, при котором разные части системы, каждая из которых решает строго свою задачу, разносятся на отдельные физические серверы. Например, посещаемый форум выносится на один сервер, а все остальное работает на другом.

Безымянный1_cr

 

Несмотря на простоту, о подобном подходе многие забывают. Например, мы очень часто встречаем веб-проекты, где используется только одна база MySQL под совершенно различные типы данных. В одной базе лежат и статьи, и баннеры, и статистика, хотя по-хорошему это должны быть разные экземпляры MySQL. Если у вас есть функционально не связанные данные (как в этом примере), то их целесообразно разносить в разные экземпляры баз данных или даже физические серверы. Посмотрим на это с другой стороны. Если у вас есть в одном проекте и встроенная интегрированная баннерокрутилка, и сервис, который показывает посты пользователей, то разумное решение — сразу осознать, что эти данные никак не связаны между собой и поэтому должны жить в самом простом варианте в двух разных запущенных MySQL. Это относится и к вычисляющим бэкендам — они тоже могут быть разными. С совершенно разными настройками, с разными используемыми технологиями и написанные на разных языках программирования. Возвращаясь к примеру: для показа постов вы можете использовать в качестве бэкенда самый обычный PHP, а для баннерной системы вы можете запустить модуль к nginx’у. Соответственно, для постов вы можете выделить сервер с большим количеством памяти (ну PHP все-таки), при этом для баннерной системы память может быть не так важна, как процессорная емкость.

Сделаем выводы: функциональное разбиение бэкенда целесообразно использовать в качестве простейшего метода масштабирования. Группируйте сходные функции и запускайте их обработчики на разных физических серверах. Обратимся к следующему подходу.

 

От авторов

Основным направлением деятельности нашей компании является решение проблем, связанных с высокой нагрузкой, консультирование, проектирование масштабируемых архитектур, проведение нагрузочных тестирований и оптимизация сайтов. В число наших клиентов входят инвесторы из России и со всего мира, а также проекты «ВКонтакте», «Эльдорадо», «Имхонет», Photosight.ru и другие. Во время консультаций мы часто сталкиваемся с тем, что многие не знают самых основ — что такое масштабирование и каким оно бывает, какие инструменты и для чего используются. Эта публикация продолжает серию статей «Учебник по высоким нагрузкам». В этих статьях мы постараемся последовательно рассказать обо всех инструментах, которые используются при построении архитектуры высоконагруженных систем.

 

Классическое горизонтальное масштабирование

О том, что такое горизонтальное масштабирование, в принципе, мы уже знаем. Если вашей системе не хватает мощности, вы просто добавляете еще десять серверов, и они продолжают работать. Но не каждый проект позволит провернуть такое. Есть несколько классических парадигм, которые необходимо рассмотреть на раннем этапе проектирования, чтобы программный код можно было масштабировать при росте нагрузки.

Безымянный5_cr

 

Концепции Shared Nothing и Stateless

Рассмотрим две концепции — Shared Nothing и Stateless, которые могут обеспечить возможность горизонтального масштабирования.

Подход Shared Nothing означает, что каждый узел является независимым, самодостаточным и нет какой-то единой точки отказа. Это, конечно, не всегда возможно, но в любом случае количество таких точек находится под жестким контролем архитектора. Под точкой отказа мы понимаем некие данные или вычисления, которые являются общими для всех бэкендов. Например, какой-нибудь диспетчер состояний или идентификаторов. Другой пример — использование сетевых файловых систем. Это прямой путь получить на определенном этапе роста проекта узкое место в архитектуре. Если каждый узел является независимым, то мы легко можем добавить еще несколько — по росту нагрузки.

Концепция Stateless означает, что процесс программы не хранит свое состояние. Пользователь пришел и попал на этот конкретный сервер, и нет никакой разницы, попал пользователь на этот сервер или на другой. После того как запрос будет обработан, этот сервер полностью забудет информацию об этом пользователе. Пользователь вовсе не обязан все свои следующие запросы отправлять на этот же сервер, не должен второй раз приходить на него же. Таким образом, мы можем динамически менять количество серверов и не заботиться о том, чтобы роутить пользователя на нужный сервак. Наверное, это одна из серьезных причин, почему веб так быстро развивается. В нем гораздо проще делать приложения, чем писать классические офлайновые программы. Концепция «ответ — запрос» и тот факт, что ваша программа живет 200 миллисекунд или максимум одну секунду (после чего она полностью уничтожается), привели к тому, что в таких распространенных языках программирования, как PHP, до сих пор нет сборщика мусора.

Описанный подход является классическим: он простой и надежный, как скала. Однако в последнее время нам все чаще и чаще приходится отказываться от него.

 

Критика концепций Shared Nothing и Stateless

Сегодня перед вебом возникают новые задачи, которые ставят новые проблемы. Когда мы говорим про Stateless, это означает, что каждые данные каждому пользователю мы заново тащим из хранилища, а это подчас бывает очень дорого. Возникает резонное желание положить какие-то данные в память, сделать не совсем Stateless. Это связано с тем, что сегодня веб становится все более и более интерактивным. Если вчера человек заходил в веб-почту и нажимал на кнопку «Reload», чтобы проверить новые сообщения, то сегодня этим уже занимается сервер. Он ему говорит: «О, чувак, пока ты сидел на этой страничке, тебе пришли новые сообщения».

Возникают новые задачи, которые приводят к тому, что подход с Shared Nothing и отсутствием состояния в памяти иногда не является обязательным. Мы уже сталкивались неоднократно с ситуациями наших клиентов, которым мы говорим: «От этого откажитесь, положите данные в память» и наоборот «Направляйте людей на один и тот же сервер». Например, когда возникает открытая чат-комната, людей имеет смысл роутить на один и тот же сервер, чтобы это все работало быстрее.

Расскажем про еще один случай, с которым сталкивались. Один наш знакомый разрабатывал на Ruby on Rails игрушку наподобие «Арены» (онлайн драки и бои). Вскоре после запуска он столкнулся с классической проблемой: если несколько человек находятся в рамках одного боя, каждый пользователь постоянно вытаскивает из БД данные, которые во время этого боя возникли. В итоге вся эта конструкция смогла дожить только до 30 тысяч зарегистрированных юзеров, а дальше она просто перестала работать.

Обратная ситуация сложилась у компании Vuga, которая занимается играми для Facebook. Правда, когда они столкнулись с похожей проблемой, у них были другие масштабы: несколько миллиардов SELECT’ов из PostgreSQL в день на одной системе. Они перешли полностью на подход Memory State: данные начали храниться и обслуживаться прямо в оперативной памяти. Итог: ребята практически отказались от базы данных, а пара сотен серверов оказались лишним. Их просто выключили: они стали не нужны.

Безымянный4_cr

В принципе, любое масштабирование (в том числе горизонтальное) достижимо на очень многих технологиях. Сейчас очень часто речь идет о том, чтобы при создании сервиса не пришлось платить слишком много за железо. Для этого важно знать, какая технология наиболее соответствует данному профилю нагрузки с минимальными затратами железа. При этом очень часто, когда начинают размышлять о масштабировании, то забывают про финансовый аспект того же горизонтального масштабирования. Некоторые думают, что горизонтальное масштабирование — это реально панацея. Разнесли данные, все разбросали на отдельные серверы — и все стало нормально. Однако эти люди забывают о накладных расходах (оверхедах) — как финансовых (покупка новых серверов), так эксплуатационных. Когда мы разносим все на компоненты, возникают накладные расходы на коммуникацию программных компонентов между собой. Грубо говоря, хопов становится больше. Вспомним уже знакомый тебе пример. Когда мы заходим на страничку Facebook, мощный JavaScript идет на сервер, который долго-долго думает и только через некоторое время начинает отдавать вам ваши данные. Все наблюдали подобную картину: хочется уже посмотреть и бежать дальше пить кофе, а оно все грузится, грузится и грузится. Надо бы хранить данные чуть-чуть «поближе», но у Facebook уже такой возможности нет.

 

Слоистость кода

Еще пара советов для упрощения горизонтального масштабирования. Первая рекомендация: программируйте так, чтобы ваш код состоял как бы из слоев и каждый слой отвечал за какой-то определенный процесс в цепочке обработки данных. Скажем, если у вас идет работа с базой данных, то она должна осуществляться в одном месте, а не быть разбросанной по всем скриптам. К примеру, мы строим страницу пользователя. Все начинается с того, что ядро запускает модуль бизнес-логики для построения страницы пользователя. Этот модуль запрашивает у нижележащего слоя хранения данных информацию об этом конкретном пользователе. Слою бизнес-логики ничего не известно о том, где лежат данные: закешированы ли они, зашардированы ли (шардинг — это разнесение данных на разные серверы хранения данных, о чем мы будем говорить в будущих уроках), или с ними сделали еще что-нибудь нехорошее. Модуль просто запрашивает информацию, вызывая соответствующую функцию. Функция чтения информации о пользователе расположена в слое хранения данных. В свою очередь, слой хранения данных по типу запроса определяет, в каком именно хранилище хранится пользователь. В кеше? В базе данных? В файловой системе? И далее вызывает соответствующую функцию нижележащего слоя.

Что дает такая слоистая схема? Она дает возможность переписывать, выкидывать или добавлять целые слои. Например, решили вы добавить кеширование для пользователей. Сделать это в слоистой схеме очень просто: надо допилить только одно место – слой хранения данных. Или вы добавляете шардирование, и теперь пользователи могут лежать в разных базах данных. В обычной схеме вам придется перелопатить весь сайт и везде вставить соответствующие проверки. В слоистой схеме нужно лишь исправить логику одного слоя, одного конкретного модуля.

 

Связность кода и данных

Следующая важная задача, которую необходимо решить, чтобы избежать проблем при горизонтальном масштабировании, — минимизировать связность как кода, так и данных. Например, если у вас в SQL-запросах используются JOIN’ы, у вас уже есть потенциальная проблема. Сделать JOIN в рамках одной базы данных можно. А в рамках двух баз данных, разнесенных по разным серверам, уже невозможно. Общая рекомендация: старайтесь общаться с хранилищем минимально простыми запросами, итерациями, шагами.

Что делать, если без JOIN’а не обойтись? Сделайте его сами: сделали два запроса, перемножили в PHP — в этом нет ничего страшного. Для примера рассмотрим классическую задачу построения френдленты. Вам нужно поднять всех друзей пользователя, для них запросить все последние записи, для всех записей собрать количество комментариев — вот где соблазн сделать это одним запросом (с некоторым количеством вложенных JOIN’ов) особенно велик. Всего один запрос — и вы получаете всю нужную вам информацию. Но что вы будете делать, когда пользователей и записей станет много и база данных перестанет справляться? По-хорошему надо бы расшардить пользователей (разнести равномерно на разные серверы баз данных). Понятно, что в этом случае выполнить операцию JOIN уже не получится: данные-то разделены по разным базам. Так что придется делать все вручную. Вывод очевиден: делайте это вручную с самого начала. Сначала запросите из базы данных всех друзей пользователя (первый запрос). Затем заберите последние записи этих пользователей (второй запрос или группа запросов). Затем в памяти произведите сортировку и выберите то, что вам нужно. Фактически вы выполняете операцию JOIN вручную. Да, возможно вы выполните ее не так эффективно, как это сделала бы база данных. Но зато вы никак не ограничены объемом этой базы данных в хранении информации. Вы можете разделять и разносить ваши данные на разные серверы или даже в разные СУБД! Все это совсем не так страшно, как может показаться. В правильно построенной слоистой системе большая часть этих запросов будет закеширована. Они простые и легко кешируются — в отличие от результатов выполнения операции JOIN. Еще один минус варианта с JOIN: при добавлении пользователем новой записи вам нужно сбросить кеши выборок всех его друзей! А при таком раскладе неизвестно, что на самом деле будет работать быстрее.

 

Кеширование

Следующий важный инструмент, с которым мы сегодня познакомимся, — кеширование. Что такое кеш? Кеш — это такое место, куда можно под каким-то ключом положить данные, которые долго вычисляют. Запомните один из ключевых моментов: кеш должен вам по этому ключу отдать данные быстрее, чем вычислить их заново. Мы неоднократно сталкивались с ситуацией, когда это было не так и люди бессмысленно теряли время. Иногда база данных работает достаточно быстро и проще сходить напрямую к ней. Второй ключевой момент: кеш должен быть единым для всех бэкендов.

Второй важный момент. Кеш — это скорее способ замазать проблему производительности, а не решить ее. Но, безусловно, бывают ситуации, когда решить проблему очень дорого. Поэтому вы говорите: «Хорошо, эту трещину в стене я замажу штукатуркой, и будем думать, что ее здесь нет». Иногда это работает — более того, это работает очень даже часто. Особенно когда вы попадаете в кеш и там уже лежат данные, которые вы хотели показать. Классический пример — счетчик количества друзей. Это счетчик в базе данных, и вместо того, чтобы перебирать всю базу данных в поисках ваших друзей, гораздо проще эти данные закешировать (и не пересчитывать каждый раз).

Для кеша есть критерий эффективности использования, то есть показатель того, что он работает, — он называется Hit Ratio. Это отношение количества запросов, для которых ответ нашелся в кеше, к общему числу запросов. Если он низкий (50–60%), значит, у вас есть лишние накладные расходы на поход к кешу. Это означает, что практически на каждой второй странице пользователь, вместо того чтобы получить данные из базы, еще и ходит к кешу: выясняет, что данных для него там нет, после чего идет напрямую к базе. А это лишние две, пять, десять, сорок миллисекунд.

Как обеспечивать хорошее Hit Ratio? В тех местах, где у вас база данных тормозит, и в тех местах, где данные можно перевычислять достаточно долго, там вы втыкаете Memcache, Redis или аналогичный инструмент, который будет выполнять функцию быстрого кеша, — и это начинает вас спасать. По крайней мере, временно.

Олег Бунин

IMG_6481_cr

Известный специалист по Highload-проектам. Его компания «Лаборатория Олега Бунина» специализируется на консалтинге, разработке и тестировании высоконагруженных веб-проектов. Сейчас является организатором конференции HighLoad++ (www.highload.ru). Это конференция, посвященная высоким нагрузкам, которая ежегодно собирает лучших в мире специалистов по разработке крупных проектов. Благодаря этой конференции знаком со всеми ведущими специалистами мира высоконагруженных систем.

Константин Осипов

Константин Осипов (1)_cr

Специалист по базам данных, который долгое время работал в MySQL, где отвечал как раз за высоконагруженный сектор. Быстрота MySQL — в большой степени заслуга именно Кости Осипова. В свое время он занимался масштабируемостью MySQL 5.5. Сейчас отвечает в Mail.Ru за кластерную NoSQL базу данных Tarantool, которая обслуживает 500–600 тысяч запросов в секунду. Использовать этот Open Source проект может любой желающий.

Максим Лапшин

Максим Лапшин_cr

Решения для организации видеотрансляции, которые существуют в мире на данный момент, можно пересчитать по пальцам. Макс разработал одно из них — Erlyvideo (erlyvideo.org). Это серверное приложение, которое занимается потоковым видео. При создании подобных инструментов возникает целая куча сложнейших проблем со скоростью. У Максима также есть некоторый опыт, связанный с масштабированием средних сайтов (не таких крупных, как Mail.Ru). Под средними мы подразумеваем такие сайты, количество обращений к которым достигает около 60 миллионов в сутки.

Константин Машуков

Константин Машуков_cr

Бизнес-аналитик в компании Олега Бунина. Константин пришел из мира суперкомпьютеров, где долгое время «пилил» различные научные приложения, связанные с числодробилками. В качестве бизнес-аналитика участвует во всех консалтинговых проектах компании, будь то социальные сети, крупные интернет-магазины или системы электронных платежей.

 

Проблема инвалидации кеша

Но с использованием кеша вы бонусом получаете проблему инвалидации кеша. В чем суть? Вы положили данные в кеш и берете их из кеша, однако к этому моменту оригинальные данные уже поменялись. Например, Машенька поменяла подпись под своей картинкой, а вы зачем-то положили одну строчку в кеш вместо того, чтобы тянуть каждый раз из базы данных. В результате вы показываете старые данные — это и есть проблема инвалидации кеша. В общем случае она не имеет решения, потому что эта проблема связана с использованием данных вашего бизнес-приложения. Основной вопрос: когда обновлять кеш? Ответить на него подчас непросто. Например, пользователь публикует в социальной сети новый пост — допустим, в этот момент мы пытаемся избавиться от всех инвалидных данных. Получается, нужно сбросить и обновить все кеши, которые имеют отношение к этому посту. В худшем случае, если человек делает пост, вы сбрасываете кеш с его ленты постов, сбрасываете все кеши с ленты постов его друзей, сбрасываете все кеши с ленты людей, у которых в друзьях есть те, кто в этом сообществе, и так далее. В итоге вы сбрасываете половину кешей в системе. Когда Цукерберг публикует пост для своих одиннадцати с половиной миллионов подписчиков, мы что — должны сбросить одиннадцать с половиной миллионов кешей френдлент у всех этих subscriber’ов? Как быть с такой ситуацией? Нет, мы пойдем другим путем и будем обновлять кеш при запросе на френдленту, где есть этот новый пост. Система обнаруживает, что кеша нет, идет и вычисляет заново. Подход простой и надежный, как скала. Однако есть и минусы: если сбросился кеш у популярной страницы, вы рискуете получить так называемые race-condition (состояние гонок), то есть ситуацию, когда этот самый кеш будет одновременно вычисляться несколькими процессами (несколько пользователей решили обратиться к новым данным). В итоге ваша система занимается довольно пустой деятельностью — одновременным вычислением n-го количества одинаковых данных.

Один из выходов — одновременное использование нескольких подходов. Вы не просто стираете устаревшее значение из кеша, а только помечаете его как устаревшее и одновременно ставите задачу в очередь на пересчет нового значения. Пока задание в очереди обрабатывается, пользователю отдается устаревшее значение. Это называется деградация функциональности: вы сознательно идете на то, что некоторые из пользователей получат не самые свежие данные. Большинство систем с продуманной бизнес-логикой имеют в арсенале подобный подход.

 

Проблема старта с непрогретым кешем

Еще одна проблема — старт с непрогретым (то есть незаполненным) кешем. Такая ситуация наглядно иллюстрирует утверждение о том, что кеш не может решить проблему медленной базы данных. Предположим, что вам нужно показать пользователям 20 самых хороших постов за какой-либо период. Эта информация была у вас в кеше, но к моменту запуска системы кеш был очищен. Соответственно, все пользователи обращаются к базе данных, которой для построения индекса нужно, скажем, 500 миллисекунд. В итоге все начинает медленно работать, и вы сами себе сделали DoS (Denial-of-service). Сайт не работает. Отсюда вывод: не занимайтесь кешированием, пока у вас не решены другие проблемы. Сделайте, чтобы база быстро работала, и вам не нужно будет вообще возиться с кешированием. Тем не менее даже у проблемы старта с незаполненным кешем есть решения:

  1. Использовать кеш-хранилище с записью на диск (теряем в скорости);
  2. Вручную заполнять кеш перед стартом (пользователи ждут и негодуют);
  3. Пускать пользователей на сайт партиями (пользователи все так же ждут и негодуют).

Как видите, любой способ плох, поэтому лишь повторимся: старайтесь сделать так, чтобы ваша система работала и без кеширования.

 

Оставить мнение

Check Also

Хакер ищет авторов. Читатель? Хакер? Программист? Безопасник? Мы тебе рады!

Восемнадцать лет мы делаем лучшее во всем русскоязычном пространстве издание по IT и инфор…