Человека всегда привлекала идея управлять машиной естественным языком. Возможно, это отчасти связано с желанием человека быть НАД машиной. Так сказать, чувствовать свое превосходство. Но основной посыл — это упрощение взаимодействия человека с искусственным интеллектом. Управление голосом в Linux с переменным успехом реализуется без малого уже четверть века. Давай разберемся в вопросе и попробуем сблизиться с нашей ОС настолько, насколько это только возможно.

 

Суть дела

Системы работы с человеческим голосом для Linux существуют давно, и их великое множество. Но не все они корректно обрабатывают русскую речь. Некоторые и вовсе заброшены разработчиками. В первой части нашего обзора мы поговорим непосредственно о системах распознавания речи и голосовых ассистентах, а во второй — рассмотрим конкретные примеры их использования на Linux-десктопе.

Следует различать собственно системы распознавания речи (перевод речи в текст или в команды), такие как, например, CMU Sphinx, Julius, а также приложения на основе этих двух движков, и голосовые ассистенты, ставшие популярными с развитием смартфонов и планшетов. Это, скорее, побочный продукт систем распознавания речи, дальнейшее их развитие и воплощение всех удачных идей распознавания голоса, применение их на практике. Для Linux-десктопов таких пока мало.

Надо понимать, что движок распознавания речи и интерфейс к нему — это разные вещи. Таков базовый принцип архитектуры Linux — разделение сложного механизма на более простые составные части. Самая сложная работа ложится на плечи движков. Обычно это скучная консольная программа, работающая незаметно для пользователя. Пользователь же взаимодействует в основном с программой-интерфейсом. Создать интерфейс несложно, поэтому основные усилия разработчики направляют именно на разработку открытых движков распознавания речи.

 

Что было раньше

Исторически сложилось так, что все системы работы с речью в Linux развивались не спеша и скачкообразно. Причина не в криворукости разработчиков, а в высоком уровне вхождения в среду разработки. Написание кода системы для работы с голосом требует высокой квалификации программиста. Поэтому, перед тем как начать разбираться с системами работы с речью в Linux, необходимо сделать небольшой экскурс в историю. Была когда-то в IBM такая чудесная операционная система — OS/2 Warp (Merlin). Вышла она в сентябре далекого уже 1996 года. Кроме того, что она обладала очевидными преимуществами перед всеми остальными операционками, OS/2 была укомплектована весьма продвинутой системой распознавания речи — IBM ViaVoice. Для того времени это было очень круто, учитывая, что ОС работала на системах с 486-м процессором с объемом ОЗУ от 8 Мбайт (!).

Как известно, OS/2 проиграла битву Windows, однако многие ее компоненты продолжили существовать независимо. Одним из таких компонентов стала та самая IBM ViaVoice, превратившаяся в самостоятельный продукт. Так как IBM всегда любила Linux, ViaVoice была портирована на эту ОС, что дало детищу Линуса Торвальдса самую передовую для своего времени систему распознавания речи.

К сожалению, судьба ViaVoice сложилась не так, как хотели бы линуксоиды. Сам движок распространялся бесплатно, но его исходники оставались закрытыми. В 2003 году IBM продала права на технологию канадо-американской компании Nuance. Nuance, разработавшая, пожалуй, самый успешный коммерческий продукт для распознавания речи — Dragon Naturally Speeking, здравствует и ныне. На этом бесславная история ViaVoice в Linux практически закончилась. За то короткое время, что ViaVoice была бесплатной и доступной линуксоидам, к ней разработали несколько интерфейсов, таких, например, как Xvoice. Однако проект давно заброшен и ныне практически неработоспособен.

OS/2 Warp — система, которую мы потеряли
OS/2 Warp — система, которую мы потеряли

INFO


Самое сложное звено в машинном распознавании речи — естественный человеческий язык.
 

Что сегодня?

Сегодня все гораздо лучше. В последние годы, после открытия исходников Google Voice API, ситуация с развитием систем распознавания речи в Linux значительно улучшилась, выросло качество распознавания. Например, проект Linux Speech Recognition на основе Google Voice API показывает очень неплохие результаты для русского языка. Все движки работают примерно одинаково: сначала звук с микрофона устройства юзера попадает в систему распознавания, после чего либо голос обрабатывается на локальном устройстве, либо запись отправляется на удаленный сервер для дальнейшей обработки. Второй вариант больше подходит для смартфонов или планшетов. Собственно, именно так и работают коммерческие движки — Siri, Google Now и Cortana.

Из всего многообразия движков для работы с человеческим голосом можно выделить несколько активных на данный момент.

WARNING


Установка многих из описанных систем распознавания речи — нетривиальная задача!
 

CMU Sphinx

Большая часть разработки CMU Sphinx ведется в университете Карнеги — Меллона. В разное время над проектом работали и Массачусетский технологический институт, и покойная ныне корпорация Sun Microsystems. Исходники движка распространяются под лицензией BSD и доступны как для коммерческого, так и для некоммерческого использования. Sphinx — это не пользовательское приложение, а, скорее, набор инструментов, который можно применить в разработке приложений для конечных пользователей. Sphinx сейчас — это крупнейший проект по распознаванию речи. Он состоит из нескольких частей:

  • Pocketsphinx — небольшая быстрая программа, обрабатывающая звук, акустические модели, грамматики и словари;
  • библиотека Sphinxbase, необходимая для работы Pocketsphinx;
  • Sphinx4 — собственно библиотека распознавания;
  • Sphinxtrain — программа для обучения акустическим моделям (записям человеческого голоса).

Проект развивается медленно, но верно. И главное — его можно использовать на практике. Причем не только на ПК, но и на мобильных устройствах. К тому же движок очень хорошо работает с русской речью. При наличии прямых рук и ясной головы можно настроить распознавание русской речи с помощью Sphinx для управления домашней техникой или умным домом. По сути, можно обычную квартиру превратить в умный дом, чем мы и займемся во второй части этого обзора. Реализации Sphinx имеются для Android, iOS и даже Windows Phone. В отличие от облачного способа, когда работа по распознаванию речи ложится на плечи серверов Google ASR или Яндекс SpeechKit, Sphinx работает точнее, быстрее и дешевле. И полностью локально. При желании можно научить Sphinx русской языковой модели и грамматике пользовательских запросов. Да, придется немного потрудиться при установке. Равно как и настройка голосовых моделей и библиотек Sphinx — занятие не для новичков. Так как основа CMU Sphinx — библиотека Sphinx4 — написана на Java, можно включать ее код в свои приложения для распознавания речи. Конкретные примеры использования будут описаны во второй части нашего обзора.

VoxForge

Особо выделим понятие речевого корпуса. Речевой корпус — это структурированное множество речевых фрагментов, которое обеспечено программными средствами доступа к отдельным элементам корпуса. Иными словами — это набор человеческих голосов на разных языках. Без речевого корпуса невозможна работа ни одной системы распознавания речи. В одиночку или даже небольшим коллективом создать качественный открытый речевой корпус сложно, поэтому сбором записей человеческих голосов занимается специальный проект — VoxForge.

Любой, у кого есть доступ к интернету, может поучаствовать в создании речевого корпуса, просто записав и отправив фрагмент речи. Это можно сделать даже по телефону, но удобней воспользоваться сайтом. Конечно, кроме собственно аудиозаписи, речевой корпус должен включать в себя дополнительную информацию, такую как фонетическая транскрипция. Без этого запись речи бессмысленна для системы распознавания.

VoxForge — стартовый портал для тех, кто хочет внести свой вклад в разработку открытых систем распознавания речи
VoxForge — стартовый портал для тех, кто хочет внести свой вклад в разработку открытых систем распознавания речи

 

HTK, Julius и Simon

HTK — Hidden Markov Model Toolkit — это инструментарий для исследования и разработки средств распознавания речи с использованием скрытых марковских моделей, разрабатывается в Кембриджском университете под патронажем Microsoft (Microsoft когда-то выкупила этот код у коммерческого предприятия Entropic Cambridge Research Laboratory Ltd, а затем вернула его Кембриджу вместе с ограничивающей лицензией). Исходники проекта доступны всем желающим, но использование кода HTK в продуктах, предназначенных для конечных пользователей, запрещено лицензией.

Однако это не означает, что HTK бесполезен для Linux-разработчиков: его можно использовать как вспомогательный инструмент при разработке открытых (и коммерческих) средств распознавания речи, что и делают разработчики открытого движка Julius, который разрабатывается в Японии. Julius лучше всего работает с японским языком. Великий и могучий тоже не обделен, ведь в качестве голосовой базы данных используется все тот же VoxForge.

Продолжение доступно только участникам

Вариант 1. Присоединись к сообществу «Xakep.ru», чтобы читать все материалы на сайте

Членство в сообществе в течение указанного срока откроет тебе доступ ко ВСЕМ материалам «Хакера», увеличит личную накопительную скидку и позволит накапливать профессиональный рейтинг Xakep Score! Подробнее

Вариант 2. Открой один материал

Заинтересовала статья, но нет возможности стать членом клуба «Xakep.ru»? Тогда этот вариант для тебя! Обрати внимание: этот способ подходит только для статей, опубликованных более двух месяцев назад.


Check Also

Неинновационные инновации. Откуда растут корни технологий Apple

Тройная камера, умный режим HDR, «ночной режим» Night Shift, True Tone, Liquid Retina Disp…

1 комментарий

  1. Аватар

    peredraga

    24.06.2016 at 00:35

    Голосовой блокнот speechpad.ru теперь имеет интеграцию с Linux — https://speechpad.ru/blog/linux-integration/

Оставить мнение