С выходом каждого нового поколения смартфонов процессоры становятся всё быстрее, разрешение экрана — всё выше, приложения — всё прожорливее, а аккумуляторы… Аккумуляторы всё те же. Чтобы хоть как-то компенсировать этот недостаток, производители используют технологии быстрой зарядки. Но, кроме преимуществ, они могут принести владельцу смартфона массу проблем — от банальной несовместимости и снижения срока службы аккумулятора до сожженных смартфонов и блоков питания.

На сегодняшний день нам доступен широкий спектр протоколов зарядки, разрабатываемых и продвигаемых разными компаниями и организациями. По возможности попробуем придерживаться хронологии.

 

Обычный USB

USB допускает ток не более 500 мА при напряжении 5 В. Лишь много позднее, с выходом спецификации USB 3.0, максимальный ток был поднят до 900 мА. Обычным кнопочным телефонам, которые стали выходить не с собственными разъемами для заряда, а со штекерами mini-, а потом и microUSB, вполне хватало небольшой мощности.

Все изменилось с выходом смартфонов, емкость аккумуляторов которых в разы превышала относительно небольшую емкость батарей кнопочных телефонов. Даже небольшие по современным меркам аккумуляторы с емкостью 1500 мА ∙ ч уже хотелось заряжать быстрее, чем за 4–4,5 ч (время с учетом потерь при зарядке и естественного замедления скорости заряда после 80%). Возникла необходимость каким-то образом передать больший ток заряда по стандартному кабелю, при этом не спалив случайно контроллер USB, если устройство подключат к компьютеру.

 

USB Battery Charging Revision 1.2 (BC1.2)

Этот стандарт был принят в далеком 2011 году и позволял ранним устройствам заряжаться от разъемов USB силой тока до 1,5 А при напряжении 5 В. Стандарт принят организацией USB-IF, поэтому его использование для производителей бесплатно. По современным меркам он весьма примитивен: тип зарядного устройства определяется по напряжению на контактах D+ и D-.

Ссылки:

 

Qualcomm Quick Charge 1.0

Был обнародован компанией Qualcomm в 2013 году с чипсетами Snapdragon 600 (и, кстати, используется до сих пор в младших чипсетах, например Snapdragon 400). Здесь максимальный ток подняли до 2 А. Механизм определения зарядного устройства стал значительно умнее, поэтому шансов получить нужный ток заряда у устройств, использующих QC 1.0, стало больше.

Ссылки:

 

Стандарты Apple и Samsung

Примерно в то же время Samsung и Apple параллельно разработали свои собственные схемы определения «правильных» зарядных устройств. Так, у Apple появились устройства класса Apple 1.0A (позднее к ним добавились Apple 2.1A), которые определяли наличие зарядного устройства соответствующей мощности собственным, несовместимым со спецификацией USB-IF способом. Похожая и несовместимая схема была и у Samsung.

 

Первые универсальные зарядники

Со временем производители зарядных устройств стали делать попытки как-то стандартизировать протоколы. К примеру, вот этот монстр-осьминог предлагал пять независимых выходов, один из которых мог успешно заряжать iPhone по стандарту Apple 1A, второй — iPad по стандарту Apple 2.1A, третий — планшеты Samsung, а два других — все остальные устройства, совместимые со спецификацией USB-IF.

Множество разъемов, есть где запутаться

Множество разъемов, есть где запутаться

Множество разъемов, есть где запутаться

Ужасно, правда? Мало того что зоопарк коннекторов, нам еще и предлагается выбирать «правильный» порт, в который его воткнуть.

Также существовали вот такие адаптеры.


Уверен, ты подобное не застал, но в нашей лаборатории экземпляр имеется. В первых поколениях адаптеров просто-напросто замыкались контакты Data, что давало совместимость только с USB-IF (и заодно — с Quick Charge 1.0); в последующих версиях использовался чип, который пытался определить, какое именно устройство подключено, и выполнял необходимые действия, чтобы подключенный телефон или планшет распознал «быструю» зарядку.

Наконец, примерно три года назад начали появляться зарядные устройства со встроенной логикой определения нагрузки. Разнообразные системы IQ, AIQ и им подобные выполняют единственную функцию: определить, какое устройство заряжается — Apple (1A, 2.1A), Samsung или соответствующее стандарту USB-IF, и сообщить устройству, что оно подключено именно к зарядному устройству, а не к компьютеру. Сегодня большинство более-менее качественных блоков питания от независимых производителей оборудовано подобной схемой.

Зарядная станция с поддержкой AIQ
Зарядная станция с поддержкой AIQ

Правда, бардак? А ведь мы еще даже не начали говорить о стандартах «быстрой» зарядки в их современном понимании. Поверь, дальше будет хуже!

 

Qualcomm Quick Charge 2.0

Был анонсирован в 2013 году, но впервые использовался в устройствах на Snapdragon 800 начиная с 2014 года. Этот стандарт оказался долгожителем, пережив два поколения процессоров компании Qualcomm: Snapdragon 800 (801, 805) и Snapdragon 808, 810.

Принципиальное отличие QC 2.0 от всех ранее существовавших стандартов — использование различных комбинаций напряжения и силы тока из ряда 5, 9, 12 В и 2 и 1,67 А. Обрати внимание: если сила тока может варьироваться в процессе заряда, то напряжение может выбираться только из фиксированного списка значений 5, 9 или 12 В. К этому мы еще вернемся, когда будем рассматривать стандарт следующего поколения — QC 3.0.

Для чего вообще потребовалось поднимать напряжение, а не силу тока? Ключевой момент здесь — совместимость с огромным парком существующих аксессуаров, кабелей и зарядных устройств. Дело в том, что на момент выхода спецификации QC 2.0 все еще использовался физический формат разъемов USB-A на одном конце и microUSB на другом. Их спецификация не подразумевает передачу тока, превышающего 2,4 А при напряжении 5 В. Как известно, тепловые потери в проводах растут пропорционально току и квадрату сопротивления. Повышение силы тока при неизменном напряжении 5 В могло привести к опасному нагреву в области разъемов, избыточным тепловым потерям в самом кабеле, перегреву и потенциальному выходу из строя зарядных портов — и непременно привело бы, если бы пользователь брал для зарядки не комплектный кабель или ЗУ с фиксированным проводом, а другой, случайный шнурок. Повышение напряжения позволило одним махом снять проблему совместимости с существующими проводами: теперь максимальный ток ни при каких обстоятельствах не превышал значения 2,4 А, фактически ограничиваясь значением 2 А.

Впервые вместо ненадежного аналогового метода определения зарядного устройства был использован метод цифровой коммуникации (ведь обидно было бы сжечь контроллер заряда случайно попавшим на него напряжением в 12 В). В целом использование комбинации из планшета/телефона с QC 2.0 и соответствующего зарядного устройства давало неплохую гарантию, что зарядка пойдет именно по быстрому протоколу.

INFO

Кстати, максимальный ток подается по стандарту только в самом начале зарядки, когда аккумулятор пуст или практически пуст. С повышением уровня заряда снижается подаваемая на аккумулятор мощность, а на уровне примерно 80% скорость заряда зачастую и вовсе неотличима от зарядки от «компьютерного» порта. Телефон очень быстро набирает первые 40–50% заряда, после чего скорость зарядки постепенно замедляется, и последние единицы процентов могут набираться почти столько же времени, сколько первые 50.

С таким резким скачком в мощности и скорости зарядки (здесь достижимы 18 Вт) возникла другая проблема: аккумуляторы при зарядке стали перегреваться, и химия батарейки начинала деградировать, что со временем приводило к снижению ее ресурса. Да, в стандарте были заложены «безопасные» значения температур, но максимальная скорость зарядки была в те годы таким значительным маркетинговым преимуществом, что о сроке жизни аккумуляторов (которые все чаще становились несъемными) производители предпочитали если даже и задумываться, то не говорить покупателям.

Ситуация стала еще хуже с выходом «горячего» поколения процессоров Snapdragon 808 и 810, одновременно с которыми в отдельных моделях появились разъемы USB-C. Поскольку Android склонен к выполнению отложенных задач (например, пакетному обновлению установленных приложений) именно при подключении зарядки, перегрев процессора совместно с перегревом аккумулятора приводили к печальным последствиям: процессоры в буквальном смысле отпаивались от материнских плат, а аккумуляторы выходили из строя быстрее, чем заканчивался гарантийный срок. Яркий пример — коллективный иск к компании LG (массовый выход из строя устройств LG G4, G Flex 2, Nexus 5X).

Еще одна проблема: массовое появление устройств с разъемами USB-C в 2015 году совпало по времени с выходом ряда устройств на чипсетах поколения Qualcomm 808/810. Новый стандарт фиксировал для производителей кабелей более жесткие требования к пропускаемому току. Так, у кабеля с разъемами USB-C на обоих концах, если он сделан без нарушений спецификации, не должно быть проблем с передачей тока в 3 А. Но компьютеров и зарядных устройств, оборудованных разъемами USB-C, на рынке в тот момент в достаточном количестве просто не было, и подавляющее большинство производителей укомплектовывало смартфоны обычной USB-зарядкой с разъемом USB-A и кабелем со стандартным «большим» разъемом USB-A с одной стороны и USB-C — с другой.

При использовании подобных кабелей с медленной зарядкой проблем не возникало. Их использование с зарядками стандарта Quick Charge 2.0 также не вызывало никаких неприятностей — в конце концов, QC 2.0 создавался с оглядкой на совместимость. Проблемы — и проблемы серьезные — стали возникать тогда, когда на рынок вышел ряд моделей, использующих альтернативный стандарт быстрой зарядки, основанный на открытой спецификации USB-IF для USB Type-C 1.2.

 

Samsung Advanced Fast Charging и Motorola Turbo Power

Некоторые производители называли стандартные способы быстрой зарядки своими собственными маркетинговыми терминами. Вот, к примеру, Samsung. Samsung Advanced Fast Charging — торговая марка компании Samsung, которой обозначалась зарядка по стандарту Quick Charge 2.0. Соответственно, полная совместимость с QC 2.0 — но и возможность для Samsung в любой момент сменить пластинку, не меняя названия технологии. Что, собственно, как-то проделала Motorola, переключившись в своей технологии быстрой зарядки Turbo Power с Quick Charge 2.0 на новый стандарт USB PD (5 В / 3 А) без изменения названия. Путаница? Не то слово, но в случае с Motorola помогает, что зарядные устройства со «старым» Turbo Power были оборудованы несъемными кабелями с разъемом microUSB, а «новые», основанные на USB PD, идут с разъемом USB-C.

 

Huawei Fast Charge Protocol (FCP)

FCP — собственная разработка компании Huawei, которая должна была конкурировать с Quick Charge 2.0, заряжая смартфоны напряжением 5 или 9 В с силой тока 2 А. Оборудованные ей телефоны, как правило, включали и поддержку QC 2.0, что позволяло использовать многочисленные зарядные устройства, совместимые с этой технологией. Поскольку Huawei не лицензировала свою технологию другим производителям, известно о ней немного и ценность ее сомнительна. Зато — собственная разработка, как и процессоры Kirin.

 

USB Type-C 1.2

Спецификация USB Type-C 1.2, допускает передачу тока до 3 А при неизменном напряжении 5 В. В первом поколении смартфонов (Microsoft Lumia 950, 950XL, Google Nexus 5X, 6P), да и в большинстве современных, за редкими исключениями, используется именно эта спецификация, а не новый (более сложный, но обратно совместимый) стандарт USB Power Delivery.

Новый открытый стандарт быстрой зарядки прост и очевиден. Его реализация не требует от производителей больших усилий, использования проприетарных контроллеров заряда или каких-либо лицензионных отчислений (стандарт от USB-IF полностью бесплатен для производителей). Казалось бы, бери и пользуйся!

Без подводных камней не обошлось. Даже для такой относительно скромной мощности в 15 Вт требовались новые кабели и зарядные устройства, способные без проблем, потерь и перегрева выдерживать повышенный ток заряда. И тут оказалось, что если зарядные устройства, способные корректно и с полным соответствием спецификации USB-IF выдавать ток в 3 А, могут собрать многие производители, то безопасные шнурки, полностью соответствующие стандарту, — вещь почти мифическая, для среднего китайского производителя недостижимая. Проблема настолько необычная, возникшая буквально на ровном месте, что мы выделим ее в особый раздел.

 

Проблема с кабелями USB-C

В случае с проводами USB-A → miniUSB все было достаточно просто: провода, разъемы, изоляция. Да, можно было сэкономить на сечении проводников, и тогда устройства заряжались чуть медленнее (в особо тяжелых случаях — заметно медленнее), но большой катастрофы в любом случае не происходило.

Все изменилось с выходом стандарта USB Type-C и появлением кабелей с соответствующими штекерами. Более-менее сразу производители научились делать простейшие кабели, соответствующие спецификации USB 2.0, с разъемами USB-C на обоих концах кабеля.

Намного сложнее оказалось сделать кабели, оборудованные физическим разъемом USB Type-C и соответствующие спецификациям USB 3.0, и практически невозможным для независимых китайских производителей стал выпуск шнурков, корректно идентифицируемых с помощью микросхем электронного маркера (e-marker chip). Вот детальный разбор одного из таких кабелей (поверь, достаточно типичного).

Продолжение статьи доступно только подписчикам

Вариант 1. Оформи подписку на «Хакер», чтобы читать все статьи на сайте

Подписка позволит тебе в течение указанного срока читать ВСЕ платные материалы сайта, включая эту статью. Мы принимаем оплату банковскими картами, электронными деньгами и переводами со счетов мобильных операторов. Подробнее о подписке

Вариант 2. Купи одну статью

Заинтересовала статья, но нет возможности оплатить подписку? Тогда этот вариант для тебя! Обрати внимание: этот способ покупки доступен только для статей, опубликованных более двух месяцев назад.


3 комментария

Подпишитесь на ][, чтобы участвовать в обсуждении

Обсуждение этой статьи доступно только нашим подписчикам. Вы можете войти в свой аккаунт или зарегистрироваться и оплатить подписку, чтобы свободно участвовать в обсуждении.

Check Also

Windows 10 против шифровальщиков. Как устроена защита в обновленной Windows 10

Этой осенью Windows 10 обновилась до версии 1709 с кодовым названием Fall Creators Update …