Мобильные операторы получают массу данных и метаданных, по которым можно узнать очень многое о жизни отдельно взятого абонента. А поняв, как обрабатываются и как хранятся эти данные, ты сможешь отследить всю цепочку прохождения информации от звонка до списания денег. Если же говорить о модели внутреннего нарушителя, то здесь возможности и подавно огромные, ведь защита данных вообще не входит в задачи систем предбиллинга.

Для начала нужно учитывать, что абонентский трафик в сети телеком-оператора генерируется и поступает с разного оборудования. Это оборудование может формировать файлы с записями (файлы CDR, логи RADIUS, текст в ASCII) и работать по разным протоколам (NetFlow, SNMP, SOAP). И нужно контролировать весь этот веселый и недружный хоровод, снимать данные, обрабатывать и передавать дальше в биллинговую систему в формате, который будет предварительно стандартизован.

При этом везде бегают абонентские данные, доступ к которым желательно не предоставлять посторонним. Насколько защищена информация в такой системе с учетом всех цепочек? Давай разбираться.

 

Зачем предбиллинг телеком-операторам?

Считается, что абоненты хотят получать все более новые и современные виды услуг, но нельзя постоянно менять для этого оборудование. Поэтому реализацией новых услуг и способами их предоставления должен заниматься предбиллинг — это его первая задача. Вторая — анализ трафика, проверка его корректности, полноты загрузки в абонентский биллинг, подготовка данных для биллинга.

С помощью предбиллинга реализованы различные сверки и дозагрузки данных. Например, сверка состояния услуг на оборудовании и в биллинге. Бывает, абонент пользуется услугами при том, что в биллинге он уже заблокирован. Либо он пользовался услугами, но с оборудования не поступили записи об этом. Ситуаций может быть множество, большинство таких моментов и решается с помощью предбиллинга.

Когда-то я писал курсовую работу по оптимизации бизнес-процессов компании и расчету ROI. Проблема с расчетом ROI была не в том, что не было исходных данных, — я не понимал, какой «линейкой» их мерить. Примерно так же часто бывает с предбиллингом. Можно бесконечно настраивать и улучшать обработку, но всегда в какой-то момент обстоятельства и данные сложатся так, что произойдет исключение. Можно идеально выстроить систему работы и мониторинга вспомогательных систем биллинга и предбиллинга, но невозможно обеспечить бесперебойную работу оборудования и каналов передачи данных.

Поэтому и существует дублирующая система, которая занимается проверкой данных в биллинге и данных, ушедших от предбиллинга в биллинг. Ее задача — поймать то, что ушло с оборудования, но по какой-то причине «не легло на абонента». Эту роль дублирующей и контролирующей предбиллинг системы обычно играет FMS — Fraud Management System. Конечно, ее основное предназначение — вовсе не контроль предбиллинга, а выявление мошеннических схем и, как следствие, мониторинг потерь и расхождений данных с оборудования и биллинговых данных.

На самом деле вариантов использования предбиллинга очень много. Например, это может быть выполнение сверки между состоянием абонента на оборудовании и в CRM. Такая схема может выглядеть следующим образом.

  1. С помощью предбиллинга по SOAP получаем данные с оборудования (HSS, VLR, HLR, AUC, EIR).
  2. Преобразуем исходные RAW-данные в нужный формат.
  3. Делаем запрос в смежные системы CRM (базы данных, программные интерфейсы).
  4. Производим сверку данных.
  5. Формируем записи-исключения.
  6. Делаем запрос в систему CRM на синхронизацию данных.
  7. Итог — абонент, качающий фильм в роуминге в ЮАР, блокируется с нулевым балансом и не уходит в дикий минус.

Еще один пример использования — накопление данных и дальнейшая их обработка. Такой вариант возможен, когда у нас тысячи записей с оборудования (GGSN-SGSN, телефония): выбрасывать все эти записи в детализацию абонента — полнейшее безумие, не говоря уже о том, что мы адски нагружаем все системы таким количеством мелких данных. По этой причине подойдет следующая схема, которая разрешает проблему.

  1. Получение данных с оборудования.
  2. Агрегация данных на предбиллинге (ждем, когда соберутся все нужные записи по какому-либо условию).
  3. Отправка данных в конечный биллинг.
  4. Итог — вместо 10 тысяч записей мы отправили одну с агрегирующим значением счетчика потребленного интернет-трафика. Сделали всего один запрос к базе данных и сэкономили кучу ресурсов, включая электричество!

Это всего лишь типовые схемы работы. Формат статьи не позволяет привести примеры более сложных схем (например, Big Data), но они тоже встречаются.

 

Как усмирить зоопарк?

Чтобы было понятнее, как это работает и где здесь могут возникнуть проблемы, давай возьмем систему предбиллинга Hewlett-Packard Internet Usage Manager (HP IUM, в обновленном варианте eIUM) и на ее примере посмотрим, как работает подобный софт.

Продолжение доступно только подписчикам

Материалы из последних выпусков можно покупать отдельно только через два месяца после публикации. Чтобы продолжить чтение, необходимо купить подписку.

Подпишись на «Хакер» по выгодной цене!

Подписка позволит тебе в течение указанного срока читать ВСЕ платные материалы сайта. Мы принимаем оплату банковскими картами, электронными деньгами и переводами со счетов мобильных операторов. Подробнее о подписке

Оставить мнение

Check Also

Целенаправленная социальная инженерия. Нестандартные техники введения в заблуждение

В предыдущей статье мы разобрали массовые атаки. Но их применимость ограничена: пентестер …